Langsung ke konten utama

Postingan

Menampilkan postingan dari Juli, 2020

Menghitung LD50 dengan Bayesian di R2OpenBUGS

library(R2OpenBUGS) library(BRugs) library(coda) logist.mod <- function(){ for (i in 1:N) { r[i] ~ dbin(p[i], n[i]) #asumsi1 b[i] ~ dnorm(0, tau) #asumsi2 logit(p[i]) <- alpha0 + alpha1 * x1[i] + alpha2 * x2[i] + alpha12 * x1[i] * x2[i] + b[i] } #distribusi prior alpha0 ~ dnorm(0, 1.0E-6) alpha1 ~ dnorm(0, 1.0E-6) alpha2 ~ dnorm(0, 1.0E-6) alpha12 ~ dnorm(0, 1.0E-6) tau ~ dgamma(0.001, 0.001) sigma <- 1 / sqrt(tau) } data.1 <- list(r = c(10, 23, 23, 26, 17, 5, 53, 55, 32, 46, 10, 8, 10, 8, 23, 0, 3, 22, 15, 32, 3), #r = germinated       n = c(39, 62, 81, 51, 39, 6, 74, 72, 51, 79, 13, 16, 30, 28, 45, 4, 12, 41, 30, 51, 7), #jumlah total percobaan r       x1 = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),       x2 = c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1),       N = 21, tau=.5) parameters <- c("alpha0", "alpha1", "alpha2", "alpha12") inits <- function(){    l